Orientation Control in the Michael Reaction

By G. L. BUCHANAN and G. W. MCLAY

(Chemistry Department, University of Glasgow)

IN a recent publication,¹ it has been noted that when the Michael addition of methyl vinyl ketone to cyclopentanone is carried out in the absence of strong base,² i.e., by heating the related Mannich base in an excess of cyclopentanone, the diaddition by-product which is formed in low yield,

cm.-1] in which the methyl signal appears as a doublet at τ 8.93 (J 7.0 c./sec.) and which is therefore formulated as (IV). Similar results accrue from experiments with methyl vinyl ketone and 4-dimethylaminobutan-2-one. In the presence of potassium hydroxide the former yields (V)⁵

has the 2,5-orientation (I), rather than the 2,2orientation (II) normally encountered in the basecatalysed reaction.³ This observation prompts us to record our own experience of abnormal orientation.

When phenyl vinyl ketone is condensed with 2methylcyclopentanone in the presence of potassium hydroxide,⁴ the product [m.p. 40-42°; v_{co} (CCl₄) 1736, 1689 cm.⁻¹] shows a sharp singlet (τ 8.98) for the methyl group, in the n.m.r. spectrum, as expected for structure (III).⁵ However, when β dimethylaminopropiophenone is heated in 2methylcyclopentanone, the main product (76%) is an isomer⁵ [m.p. 68-70°; v_{co} (CCl₄) 1739, 1692

[v_{c0} (CCl₄) 1736, 1720 cm.⁻¹] showing a singlet methyl signal ($\tau 9.03$) whilst the latter, on thermal decomposition in 2-methylcyclopentanone affords $(VI)^{5}$ [ν_{co} (CCl₄) 1739, 1723 cm.⁻¹] in which the methyl signal ($\tau 8.94$) appears as a doublet (/ 6.0 c./sec.).

It appears likely that the orientation effect described above will prove to be general,⁶ and that orientation in the Michael reaction can be controlled by choice of experimental conditions. The mechanism of the process is also of interest and will be discussed in a later communication.

(Received, September 15th, 1965; Com. 587.)

¹ H. O. House, B. M. Trost, R. W. Magin, R. G. Carlson, R. W. Franck, and G. H. Rasmusson, J. Org. Chem., 1965, 30, 2513.

- ¹ N. S. Gill, K. B. James, F. Lions, and K. T. Potts, J. Amer. Chem. Soc., 1952, 74, 4923.
 ⁸ E. D. Bergmann, D. Ginsburg, and R. Pappo, "Organic Reactions", R. Wiley and Sons, 1959, Vol. 10, p. 179.
 ⁴ N. C. Ross and R. Levine, J. Org. Chem., 1964, 29, 2341.
- ⁵ Satisfactory analysis figures obtained.
- ⁶ H. L. Brown and G. L. Buchanan, unpublished work.